关注我们

“我要出轨了”!伯克利的这个AI,可以猜测机械人何时将离开 -

来源:蓝光高清影视-348电影网   发布时间:2020-10-18   浏览次数:799

金磊 发自 凹非

量子位 报道 | 公众号 QbitAI

「脱离」 (disengagement),在自动驾驶系统中是一个重要的指标。

是指当自动驾驶汽车遇到故障,脱离自动驾驶模式,改为人类驾驶员接管车辆的情况。

很多人认为「脱离」次数越少,就能说明一个自动驾驶系统能力越强。因此,以往的研究都会把「脱离」当作是故障来排除掉。

但最近,UC伯克利的研究人员却「以毒攻毒」,直接用这样的数据来训练机器人,预测未来何时将发生脱离事件。

研究人员称它为LaND——从「脱离」中学会导航。

研究人员表示,通过这样的方法得到的结果,要比传统的强化学习、模仿学习都要强。

「开」着小车取数据

老规矩,先来看下训练数据。

既然伯克利的这项研究是想「以毒攻毒」,那么就必须收集出现故障时的那些数据。

于是,研究人员用一辆Clearpath Jackal机器人做测试。

先让这个机器人自己在路上「跑」,若是遇到如下三种情况则视为出故障,即开到人行道的两侧或撞到草丛等物体。

当出现故障的情况后,机器人就会进入「脱离」状态,人类研究员便用遥控器,把它重新置于有效位置,以便让它再次自主行进。

然后研究人员把在这些过程中,从机器人摄像头等传感器获取的图像等数据收集起来,作为训练数据。

投喂到神经网络做预测

拿到数据,就要开始训练了。

目的就是用这些数据,来预测机器人在未来是否会脱离。

具体的神经网络长这样。

神经网络先使用MobileNetV2,对输入的图像观测值进行处理,紧接着是一系列的全连接层。

这些图像层的输出,将作为递归神经网络LSTM的初始隐含状态(hidden state),依次处理机器人未来的每一个动作,并输出相应的预测脱离概率。

预测可视化的结果如下:

在众多可选路径中,颜色越深(红),则表明脱离的概率越高。

性能优于传统方法

最后,研究人员拿这种「以毒攻毒」的方法,与其它两种传统方法做对比,分别是模仿学习和强化学习。

在对比实验中,三种方法所采用的数据都是一致的,实验结果如表所示。

非常明显,当机器人在2.3公里长、从未走过的人行道中行进时,强化学习方法平均每2米就会脱离一次,模仿学习则是平均每13.4米就会脱离一次。

而伯克利提出的「以毒攻毒」方法,效果非常显著——平均每87.5米才会脱离一次。

作者介绍

这项研究的作者均来自UC伯克利。

△Gregory Kahn

论文一作叫Gregory Kahn,是UC伯克利EECS的一名博士生。主要研究目标是开发算法,使机器人能够在现实世界中操作。

△Pieter Abbeel

Pieter Abbeel是这项研究的另一位作者,目前在UC伯克利担任BAIR实验室的联合主任。

他的研究致力于建立更加智能的系统,其实验室推动了深度强化学习、深度模仿学习、深度非监督式学习、迁移学习、元学习、学会学习,以及研究人工智能对社会的影响。

返回爱影视

981
0
本文由网络整理 © 版权归原作者所有
破解逆势增加暗码 海信激光电视称霸十一黄金周
上一篇 2020-10-18
下一篇 2020-10-18

相关资讯

更多
  • 爱影视苹果APP安装教程!苹果用户必看!

    注:在使用该方法的时候请提前下载好嘿荼锋APP最新安装包点击直接下载TrollSto简单安装使用教程通过爱思助手 对TrollInstaller 工具进行 自签签名  然

    公告 阅读:0 发布:2023-09-19
  • 爱影视APP使用教程!所有用必看

    爱影视APP下载地址:https://2ys.app/APP内置接近多条播放线路!!所以很多用户在播放的时候容易出现某条线路播放失败或播放卡顿,那么请仔细看看下面播放与线路选择说明一:关于播放:遇到无

    公告 阅读:0 发布:2023-07-04
  • 菲比·沃勒-布里奇新加盟《夺宝奇兵5》 角色神秘

    短视娱乐讯 北京时间11月22日消息,据外国媒体报道,《夺宝奇兵5》曝光新剧照,菲比·沃勒-布里奇饰演印第安纳·琼斯的教女海伦娜,是个神秘角色。

    头条 阅读:497 发布:2022-11-29
  • 新片《五月十二月》杀青 波特曼联合摩尔主演

    短视娱乐讯 北京时间11月21日消息,据外国媒体报道,娜塔莉·波特曼和朱丽安·摩尔主演新片《五月十二月》近日已杀青。托德·海因斯(《卡罗尔》《远离天堂》)执导...

    头条 阅读:958 发布:2022-11-29

评论